

Barbora Dubovcova, Food Safety manager, Bühler AG

Reduction of microbial contamination on dry food ingredients by Low-energy electron beam

Global food safety megatrends.

COVID19 causes postponed harvest, long storage, lack of inspection, online food delivery

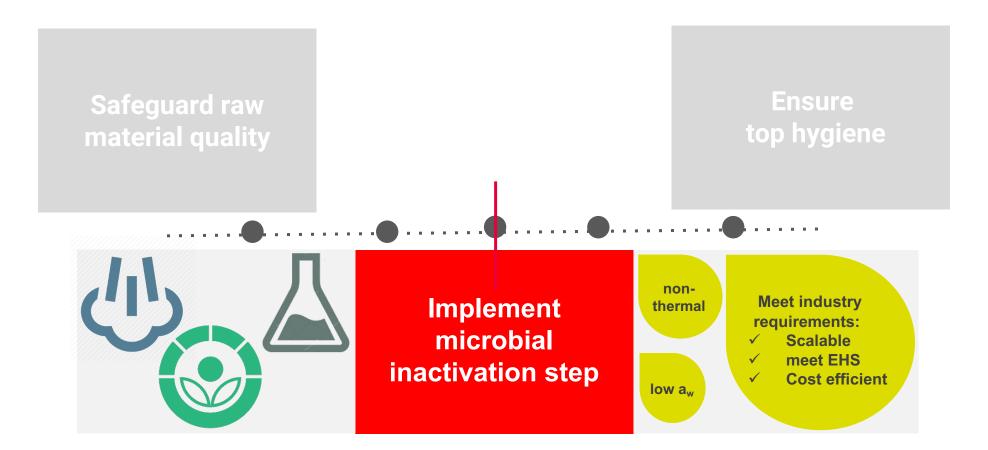
Fresh and minimally processed convenience foods

Alternative raw materials that need flavor ingredients

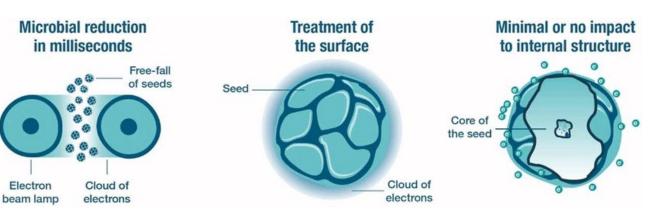
Microbial contamination in dry foods

Complex, global supply chain

Total microbial load can be as high as 100,000,000 CFU/g


Prevalence of Salmonella in imported spices to the USA up to 18%²

Example of industry requirements of a <i>clean</i> black peppercorn				
Total mesophilic count	<100,000 - 10,000	CFU/g		
Coliforms	<100	CFU/ g		
Salmonella spp.	No presence	/ 25 or 375 g		
E.Coli	No presence	/ g		
Mold and yeast	<100	CFU/g		
Aerobic bacterial spores	<1000-100	CFU/g		
Aroma, flavor	fresh, typical fo product	or the		
Appearance, color	uniform typica	l color		
Moisture	typical for the	product		


² Zhang, G., et al, 2017. Prevalence of Salmonella in 11 spices offered for sale from retail establishments and in imported shipments offered for entry to the United States. J. Food Protect. 80(11): 1791–1805.

Laatu Powered by Low-energy electron beam technology.

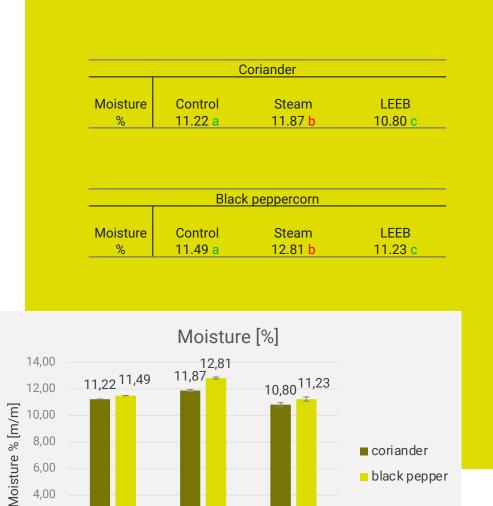
Impact on color. LEEB preserves food color better than steam treatment.

Black peppercorn

Color Scales of L, a, b.

> Color of LEEB-treated pepper is not significantly different to the Control sample. The color is typical light dark, without changes in the other tones. Steam-treated pepper is darker that the control.

Coriander


LEEB-treated coriander is also not significantly different when compared to the untreated Control. Coriander treated with steam is darker and has a slightly more yellow tone.

	C	oriander	
Hunter's parameter	Control	Stream	LEEB
ΔE	0 a	3.04 <mark>b</mark>	0.56 a
	Black	(peppercorn	
Hunter's parameter	Black Control	<u>c peppercorn</u> Stream	LEEB

Impact on moisture. LEEB keeps the food moisture level low.

LEEB treatment preserves the original moisture level of coriander and black peppercorn better than the steam treatment. Steam treatment introduces water to dry food matrices which increases the risk of contamination with *Listeria* and molds.

LEEB

Steam

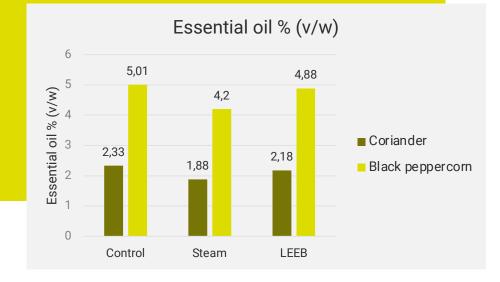
4,00 2,00 0,00

Control

Coriander		
Steam	LEEB	

2.18 a

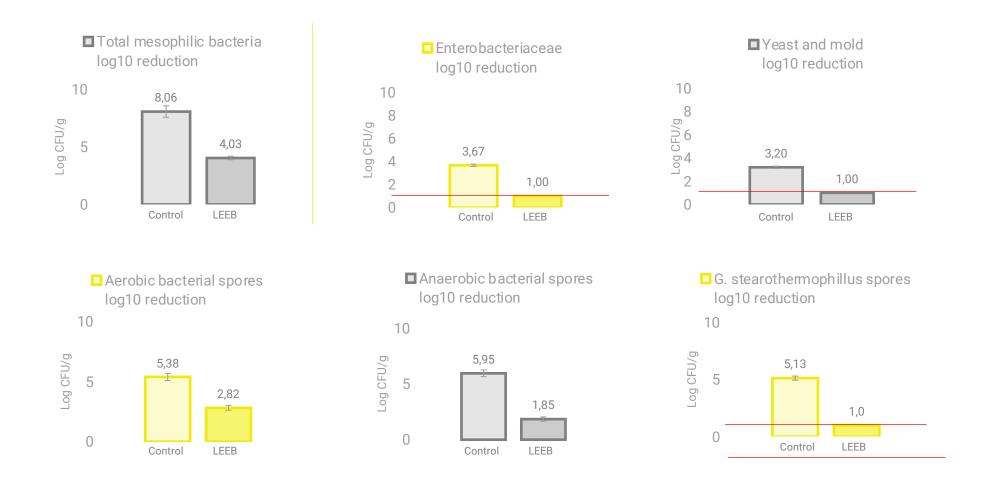
Black peppercorn				
Essential oil	Control	Steam	LEEB	
% (v/w)	5.01 a	4.2 b	4.88 a	


1.88 b

Essential oil

% (v/w)

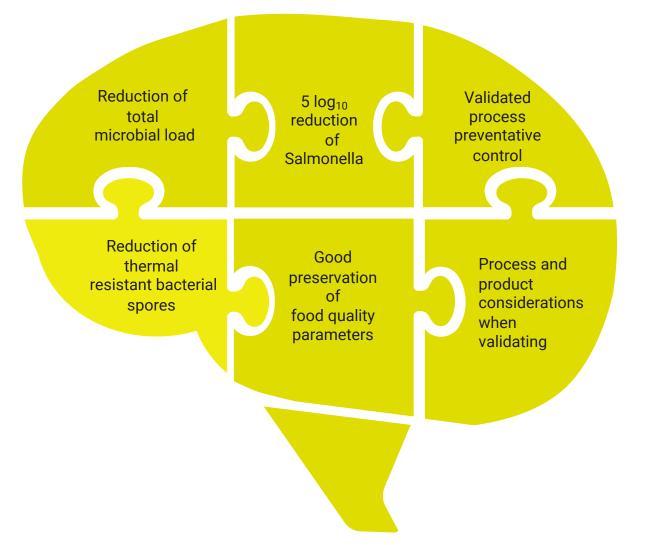
Control


2.33 a

Impact on essential oils. LEEB preserves the essential oils better than steam treatment.

LEEB treatment preserves the original level of essential oils in coriander and black peppercorn while Steam treatment reduces their level.

Consideration for process validation


- According to the FSMA, PPC(CCP) validated and regularly verified
 Possible when the process is controllable, conditions are measurable
 Work with surrogates to avoid cross-contamination in the facility
 - Industry, practical considerations =>

Some Process & product considerations

- Process main characteristics
- Impact of process parameters on the performance
- Cold & hot spot definition
- Matrix shape, size, composition, moisture..
- Most resistant pathogen & Surrogate selection and compatibility
- Inoculum preparation, inoculation method for industrial quantities
- Stability of inoculated matrix during on-site validation
- SOP repeatability by the commercial labs

Take-home message.

Low-energy electron beam technology.

Mirjad Keka

Dr. Matthew Murdoch

Irradiation expert, Bühler UK

Challenges of simulations of low energy electrons for surface irradiations

Thanks.

barbora.dubovcova@buhlergroup.com

Buhler Group