

Matthew Murdoch Buhler UK

Monte Carlo for low energy ebeam

- The challenges of Monte Carlo (MC)
- HEEB vs LEEB
- Some challenges of LEEB
- Example results

The balancing act

Software capabilities

International Food Irradiati@n Symposium

10 MeV electrons

300 keV electrons

HEEB vs LEEB

Penetration depth

HE range ~ cm LE range ~ 100s micron

Length scale

Small scale matters Details much more important

International Food Irradiati@n Symposium

Processor Geometry

Core to simulations

High detail Focus on treatment region CAD is your friend

Food geometry

High variability Lots of details Product flow

Peppercorn model

International Food Irradiati©n Symposium

Simulation

Food simulation

Complex system

Speed Rotation 'Shadowing' Somewhat simplified for conveyed systems

Understand product flow

Recreate a 'typical' flow snapshot

Simulation & Dosimetry

Link to dosimetry Generally measure $D\mu$ – dose to first micron*

Create layers/shells

Page 8

* "Dmu - A new concept in low-energy electron dosimetry" - Helt-Hansen, et al International Food Irradiati©n Symposium

Scoring

Volumes

HEEB ~ mm³

LEEB ~ µm³

More memory, more CPU

Limited by software -voxel shapes

Validation & tuning

1. Create Idealised model

2. Test & Tune

Adjust to machine data

3. Validate Compare to validation data **4. Predict** Simulate

Page 10

Operational Qualification

Describes beam

Quantifies & qualifies

Controlled parameters

Easy to simulate & compare

Simple geometries

Easy to simulate & compare data

Good candidate for

tuning!

Page 11

Tuning Testing

Reproduce beam profile in simulation High accuracy

Limited by dosimeter precision

Recreate depth dose profiles More experimental uncertainty

Page 12

International Food Irradiati@n Symposium

OQ Voltage (keV)	MC - data residual (%)
250 (tuning)	0.4
225	-3.1
200	-2.5

PQ voltage (keV)	Data/MC residual (%)
250	-3.9
225	-2.6
200	-3.9

Validation

OQ, different voltages

Simple geometry, already set up Expanded uncertainty

Performance qualification

Product simulation testing Another dataset -Expanded uncertainties (process)

Peppercorn simulations

Depth dose simulation

Many layered product model

Estimate penetration depth Idealized model Qualitative understanding Effect of 3D geometry

Page 15

- LEEB has shorter range
- More detail needed
- Create, Tune, Validate, Predict, Understand

Get In Touch.

Phone Number +442070557693

E-mail Address

matthew.murdoch@buhlergroup.co

m

9

Offices Address

20 Atlantis Avenue,

London, E16 2Bf

Page 17

Thanks.

Page 18