

Center for Nuclear Energy in Agriculture:

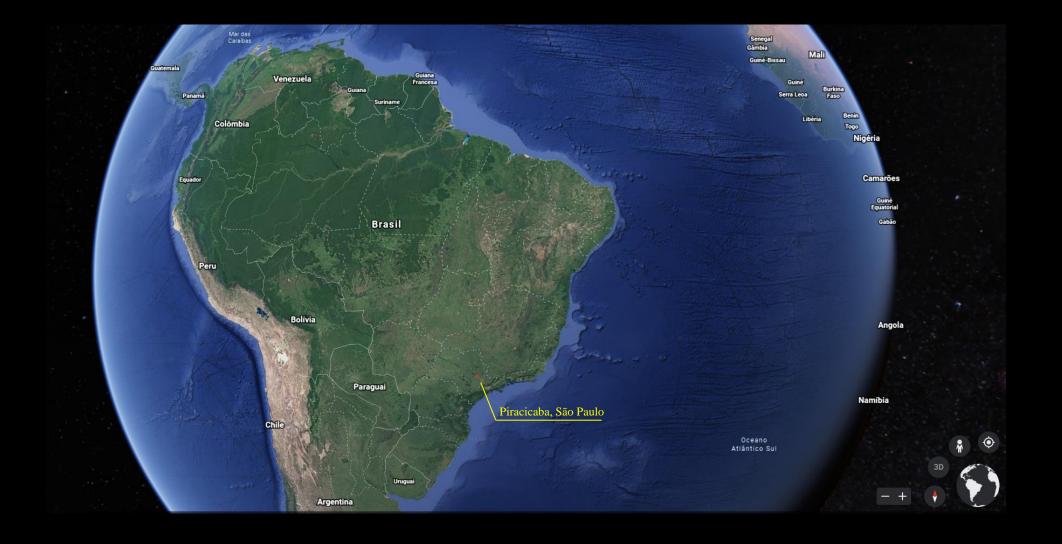
55 years applying Nuclear Techniques to Agricultural sciences in Brazil

International Food Irradiation Symposium

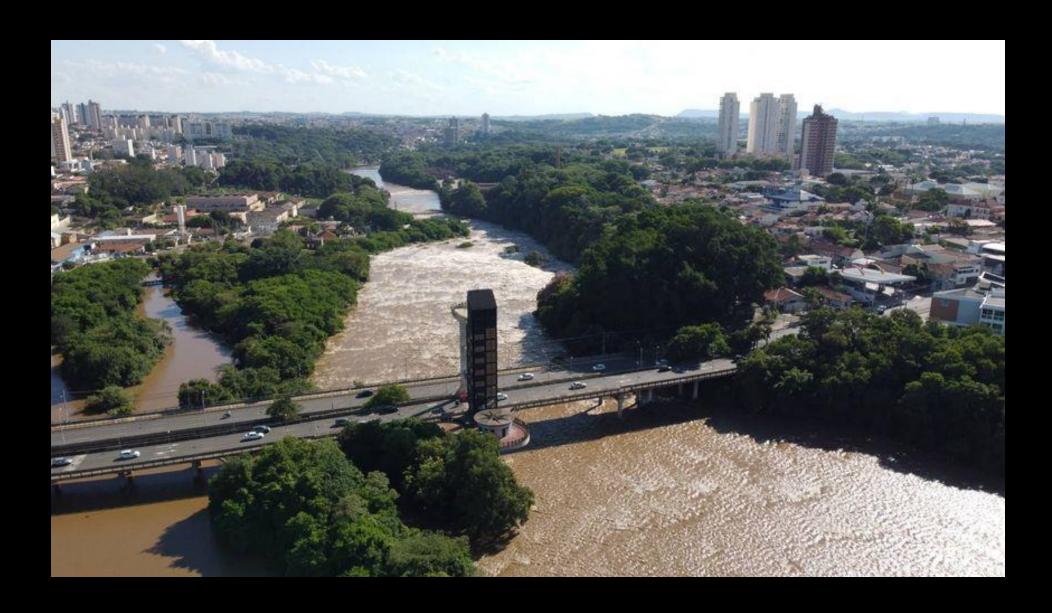
9-10-11 March 2021

Prof. Thiago Mastrangelo

Agricultural engineer by ESALQ/USP Food Irradiation and Radioentomology Lab. of CENA/USP


Summary

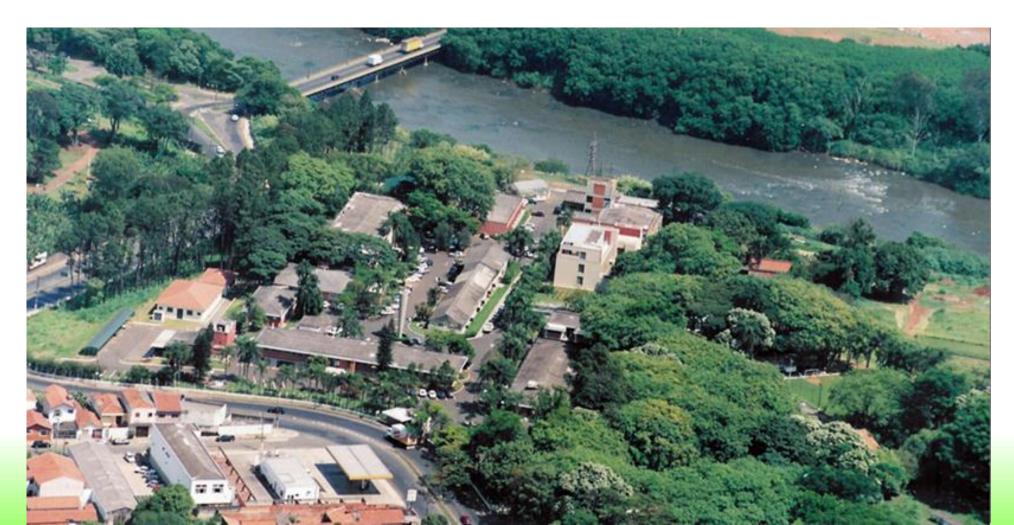
1 – Historical Remarks

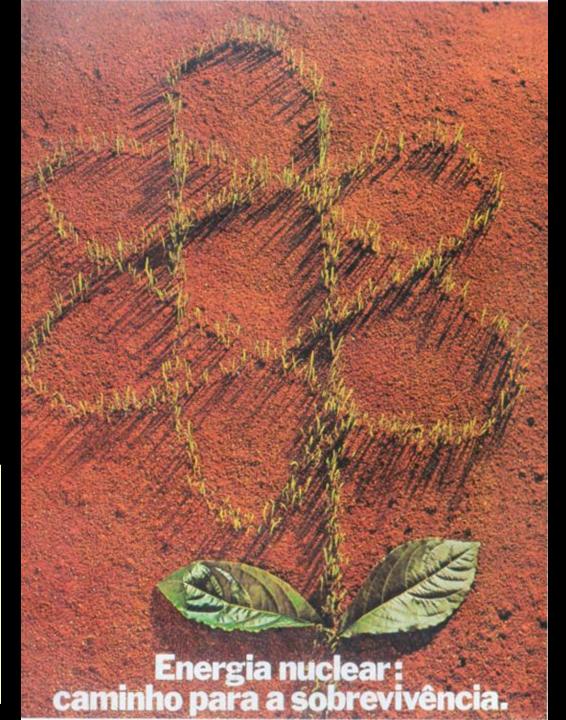

2 – Departments andLaboratories

- 3 Research Results from:
 - Mutation Breeding
 - Food Irradiation

4 – Current Needs

Piracicaba city


<u>'Luiz de Queiroz' College of Agriculture</u> — University of São Paulo



Center for Nuclear Energy in Agriculture

• 1961 - A group of professors from ESALQ, leaded by Prof. Admar

Cervellini, decided to create a research center to use nuclear techniques in agriculture (soil nutrition, tractor engine wear, etc.)

• 1962 – CNENA created (but extinct in 1964)

• 1966 — Governor of São Paulo creates CENA, linked to the Federal Government and with an agreement between USP and CNEN.

• 1967 – IAEA donates a ⁶⁰Co irradiator (600 Ci)

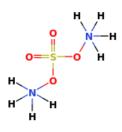
1968 – 1st Buildings, CIENA
 (introductory course to undergraduates) and
 International specialization courses.

JÁ TEMOS A COMIDA

• 1970 – 'Atomic Beam'

• 1972 – Agreement CNEN/UNDP/IAEA (project BRA/71/556) and beginning of a **Master's Postgraduate** Course.

• 1973 – 1st Dissertation defended.



• 1977 – CENA incorporated into USP and a ¹⁵N enriched tracer was obtained for the 1st time in South America.

• 1987 – 1st Brazilian cultivar of beams (CAP-1070) obtained by seed irradiation was released for human consumption.

• 1988 – CENA becomes a Specialized Institute of USP.

• 1990 - Master's and Doctorate courses.

• 1994 - 1st Thesis defended.

- 1996 1st Brazilian cultivars of *Chrysanthemums* released to the marked.
- 2001 Undergraduate disciplines offered to ESALQ.

CENA Departments and Laboratories

DVPROD

(Division of Agroindustrial Productivity and Food)

Food Irradiation and Radioentomology

Plant Breeding

Animal Nutrition

Mineral Plant Nutrition

Radiobiology and Environment

Cellular and molecular biology

Computational, Evolutionary and Systems Biology

Plant Biotechnology

Soil Fertility

Histopathology and Structural Biology of Plants

CENA/USP

DVECO

(Division of Functioning of Tropical Ecosystems)

Geoprocessing

Environmental Biogeochemistry

Nutrient Cycling

Isotopic Ecology

Ecotoxicology

Soil Physics

• 3 Scientific Divisions

• 21 Laboratories

• 32 Professors

• 115 technicians

DVTEC

(Division for Development of Analytical and Nuclear Methods and Techniques) Carbon-14

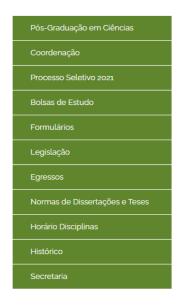
Nuclear Instrumentation

Stable Isotopes

Analytical Chemistry

Radioisotopes

- > 900 postgraduates: 539 MSc. + 448 DSc.
- ~ 200 *Students*


http://cena.usp.br/ensino/pos-ciencias

CENA Divisões Científicas Ensino Pesquisa Biblioteca Contato

Centro de Energia Nuclear na Agricultura

Programa de Pós-Graduação Ciências (Energia Nuclear na Agricultura)

Mestrado | Doutorado

A Pós-Graduação do CENA tem como compromisso a formação de cientistas para atuar nas grandes áreas de Ciências Exatas, Ciências Biológicas e Ciências Ambientais, concentradas em uma única área de concentração: a Energia Nuclear na Agricultura. Neste sentido, os projetos das dissertações ou teses tem como foco o uso e/ou desenvolvimento de técnicas e métodos nucleares, destacando-se a conservação de alimentos com radiação gama, o melhoramento genético de plantas com radiação gama para indução de mutações, o uso de radioisótopos como traçadores em estudos de fertilidade de solos, em nutrição de plantas e em nutrição animal, a aplicação de radiosótopos em química analítica, o uso técnicas analíticas nucleares baseadas em atenuação de radiação gama em física de solos e densimetria de madeiras, entre tantos outros exemplos.

Reuniões Ordinárias Comissão de Pós-Graduação

CONCEITO 7 - CAPES

Triênios

2004-2006 | 2007-2009 | 2010-2012

Quadriênio

2013-2016

A avaliação da CAPES é expressa através dos conceitos numéricos inteiros, em ordem crescente, de 1 a 7.

Linhas de Pesquisa

Disciplinas Oferecidas

Biologia na Agricultura e no Ambiente

Energia Nuclear na Agricultura e no Ambiente

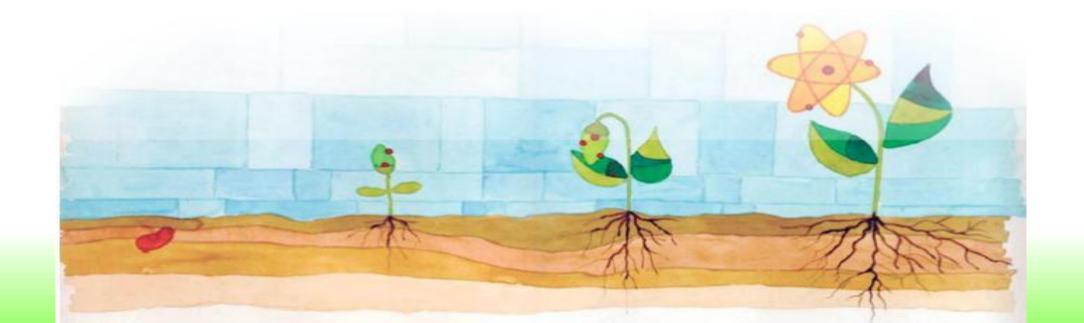
Orientadores

Gammabeam-650

Gammacell-220

Rad Source Technologies, Inc.

Leading the Way In Non-nuclear Irradiation


RS-2400V

Research Results from: Mutation Breeding Food Irradiation

Cultivars obtained by Mutation Breeding at CENA/USP

Figure 4. Flower color mutants derived from petal culture of chronic irradiated plants.

Original variety: upper right.


Tabela 2. Algumas características agronômicas obtidas pela indução de mutação por técnicas nucleares no Brasil em culturas propagadas por sementes ou de propagação vegetativa, nos quais o CENA colaborou. Alguns destes mutantes poderão em breve ser liberados para cultivo.

Culturas	Características
Tabaco	Resistência ao virus; quebra de barreira de incompatibilidade em cruzamentos interespecíficos entre <i>Nicotiana repanda</i> e <i>Nicotiana tabacum</i> .
Citrus	Porte compacto. Ausência de sementes, alteração na maturidade, maior resistência ao cancro cítrico;
Feijão	Mudança na coloração das sementes; maior comprimento basal, precocidade, hábito de crescimento compacto, tolerância ao vírus do mosaico dourado;
Banana	Redução da altura da planta, resistência a salinidade;
Crisântemo	Cor das pétalas, redução na altura da planta, aumento no número de pétalas;
Trigo	Resistencia a ferrugem do colmo(<i>Puccinia graminis</i> f.sp.tritici); Resistencia a ferrugem da folha(<i>Puccinia recondite</i> f.sp.tritici); precocidade; redução na altura da planta; tolerância a toxidez de alumínio do solo;
Arroz	precocidade; redução na altura da planta; melhoramento da qualidade do grão;
Soja	Precocidade;
Abacaxi	Folha estreita, folha mais larga, variegação ornamental; Redução no número de espinhos.
Pimenta do reino	Tolerância a doença de solo Fusarium solani f.sp.piperis
Maça	Cor da fruta mais intensa
Figo	Pedúnculo mais longo, frutos mais alongados

Tabela 1. Cultivares mutantes obtidos por técnicas nucleares já liberados aos agricultores do Brasil nos quais o CENA participou.

Culturas	Cultivares mutantes (11)
Arroz	Andosan, Marques
Feijão	IAPAR 57; IAPAR 65; CAP 1010; FT PAULISTINHA; CAMPEIRO
Crisântemo	Cristiane; Magali, Ingrid
Citrus	IAC 42

Research in Food Irradiation

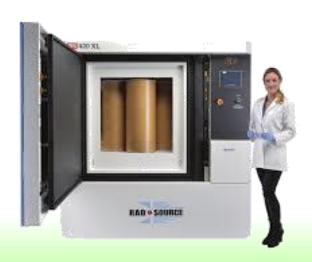
- Effects of Irradiation on food:
 - Nutritional and Microbiological aspects
 - Sensory properties (Off flavors, Odor, Texture, etc.)
- Combined processes:
 - Heat treatment, Modified atmosphere packaging, Chemical treatments, etc.
- Products
 - Stored grains, Tropical fruits, bulbs and tubers, chicken meat, etc.

Brazilian Legislation on Food Irradiation

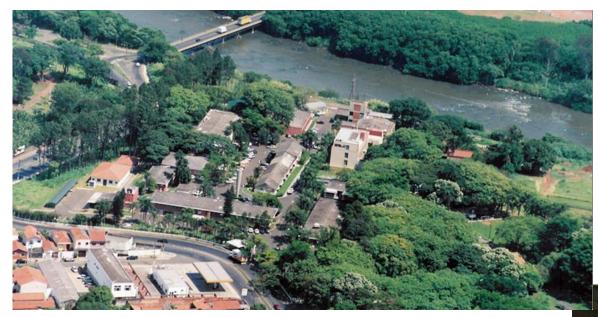
- Food irradiation is allowed since 1973 (Decree nº 72.718, 08/29/1973)
- Resolution RDC n° 21 (01/26/2001) \rightarrow Set Technical Regulation for Food Irradiation in Brazil, based on WHO (1999).
- Normative Instruction n° 9 (02/24/2011) from MAPA \rightarrow Guidelines on phytosanitary irradiation to prevent introduction and dissemination of quarantine pests, based on ISPM n° 18 (IPPC, 1997).

• Decree no 9.013 (03/29/2017) \rightarrow Inspection of Animal Products

Large-Scale Irradiation Facilities in Brazil



Current Need



Thanks for the attention!

www.cena.usp.br

Food Irradiation and Radioentomology Laboratory

www.facebook.com/liare.cena.usp.br/

Tel.: +55-19-3429-4664

www.linkedin.com/in/thiago-mastrangelo-57987760/

piaui@cena.usp.br

