

Dr. John Golding NSW Department of Primary Industries. Australia

Page 1

Phytosanitary irradiation and fresh produce quality

Introduction Phytosanitary Irradiation

Phytosanitary irradiation facilitates trade

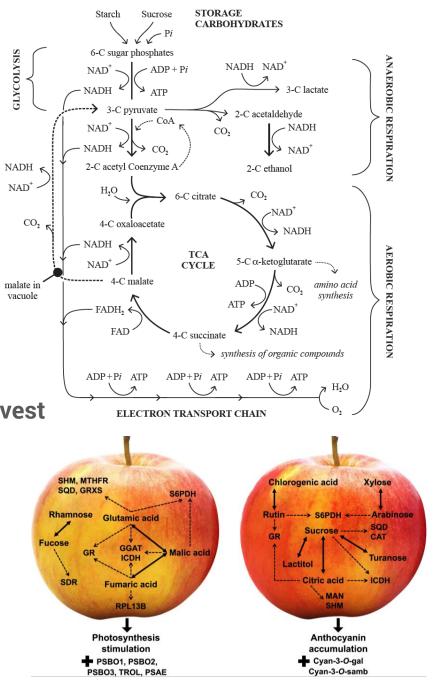
- 'Guidelines for the use of irradiation as a phytosanitary measure' – ISPM18
- 'Phytosanitary treatments for regulated pests' – ISPM28

Internationally accepted standard for fruit flies (family Tephritidae) is 150 Gy

International Plant Protection Convention Protecting the world's plant resources from pests

Phytosanitary treatments for regulated pests

Produced by the Secretariat of the International Plant Protection Convention (IPPC)



Introduction Fresh fruit and vegetables are <u>living products</u>

Fresh fruit and vegetables continue to live and breath after harvest

Complex biological and biochemical systems are maintained during ripening and senescence through storage and supply chains

Hortic Res 7, 120 (2020)

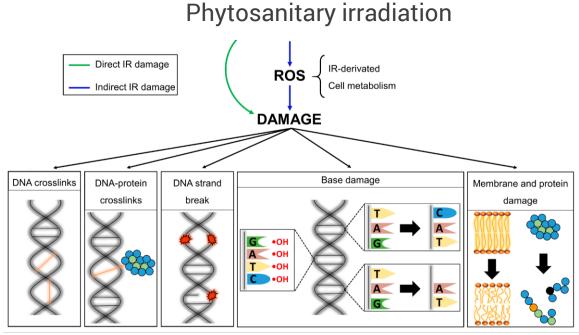
Introduction Phytosanitary irradiation causes irreversible damage to insect DNA

Phytosanitary irradiation can also cause damage to product / fruit DNA and physiology

Can affect many biological and biochemical processes:

• Fruit respiration, ripening, fruit softening, senescence and others \rightarrow **Fruit quality**

Beta (ß)/ E-beam Gamma


 (\mathbf{v})

X-Ray (X)

Adapted Jill Koh, 2020; *Plants* 2023, 12(5), 1178

Market access treatments

Comparison of end-point market access treatments

• All phytosanitary treatments affect final fruit quality

	Cold treatment	Methyl bromide fumigation	Irradiation treatment
<u>Example</u> of treatment	1°C for 14 days	32 g methyl bromide per m ³ at 15°C for 3.5 hours	150 Gy
Air freight compatible	Limited	Yes	Yes
Acceptance of treatment	General	General	Limited markets
Additional packaging requirements	None	Yes	None
Maintenance of cold chain	Yes	No	Yes
Potential chemical residues	No	Yes	No
Relative cost of treatment	Medium	Medium	High
Availability of treatment	Registered grower and packing facilities	Registered grower and commercial facilities	Limited
Effect on fruit quality	Potential impact – chilling injury	Potential impact	Potential impact
Overall comments	Potential chilling injury	Chemical fumigant that disrupts cool chain	Limited market acceptability

Phytosanitary irradiation can have <u>no</u> commercial effects on fruit quality - Blueberry and raspberry.

Treatment dose (Gy)

Golding J.B., Blades B.L, Satyan S., Jessup A.J., Spohr L.J., Harris A.M., Banos C. and Davies J.B. (2014) Low dose gamma irradiation does not affect the quality, proximate or nutritional profile of 'Brigitta' blueberry and 'Maravilla' raspberry fruit. *Postharvest Biology and Technology* 96, 49–52. http://dx.doi.org/10.1016/j.postharvbio.2014.05.00

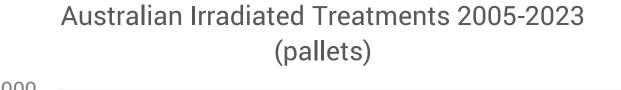
Phytosanitary irradiation can have no commercial effects on fruit quality

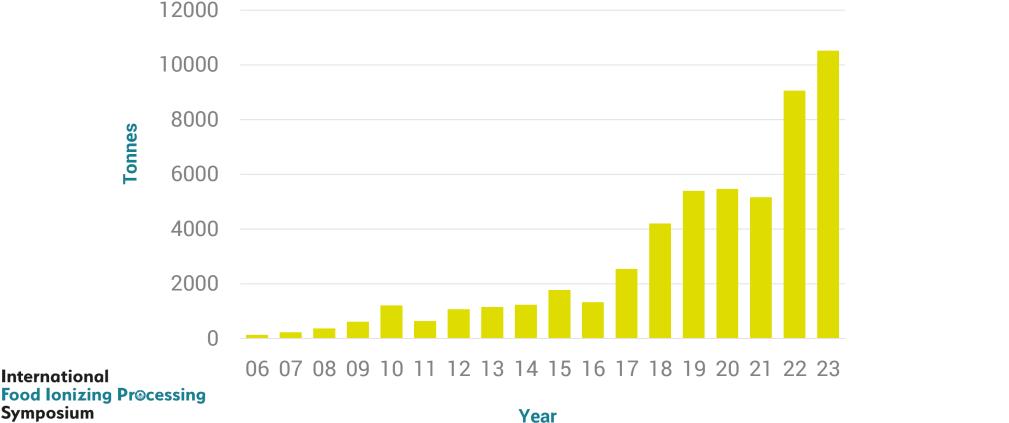
- **Cherry (different varieties, doses, growers etc)**
- **Passionfruit**
- Persimmon
- Lemon
- Tablegrapes.

Grower 9. Lapin

Hort

IFIS




Golding J.B., Blades B.L., Satyan S., Spohr L.J., Harris A., Jessup A.J., Archer J.R., Davies J.B. and Banos C. (2015) Low dose gamma irradiation does not affect the quality or total ascorbic acid concentration 'Sweetheart' passionfruit of (Passiflora edulis). Foods 376-390. doi:10.3390/foods4030376

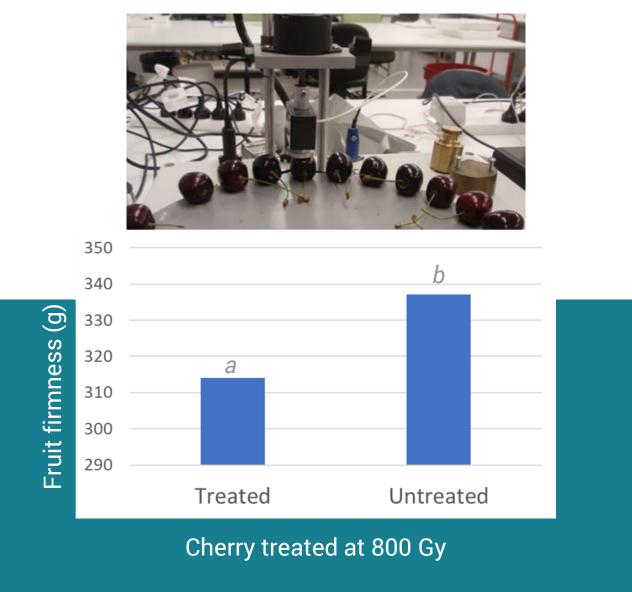
Golding J.B., Pristijono P. and Wang B. (2020) Effect of phytosanitary irradiation treatment on the storage life of 'Jiro' persimmons at 15°C. Horticulturae 6 92

Phytosanitary irradiation can have <u>no</u> commercial effects on fruit quality

Increased trade and use of irradiation demonstrates no commercial effects

Dekapon citrus treated at 150 Gy

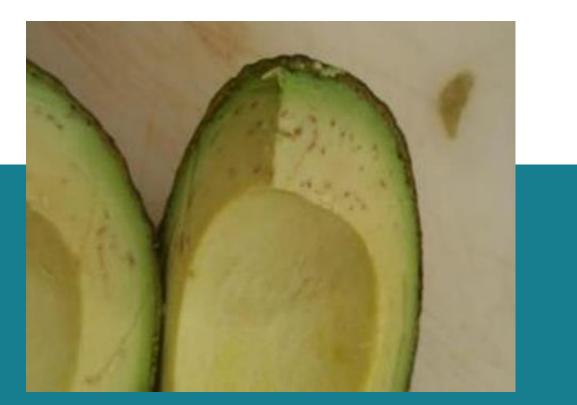
BUT Phytosanitary irradiation can negatively effect fruit quality.


Sometimes....

increased rind disorders

phyto-toxicity

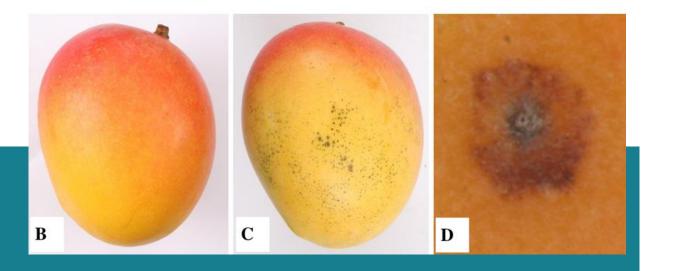
BUT Phytosanitary irradiation can negatively effect fruit quality.


Sometimes.....

increase fruit softening*

Hass avocado treated at 150 Gy

BUT Phytosanitary irradiation can negatively effect fruit quality.


Sometimes...

increased disorders

vascular browning

induced lenticle damage in B74 mango

From Roberto Marques et al (2022) Australia

BUT Phytosanitary irradiation can negatively effect fruit quality.

Sometimes...

increased disorders

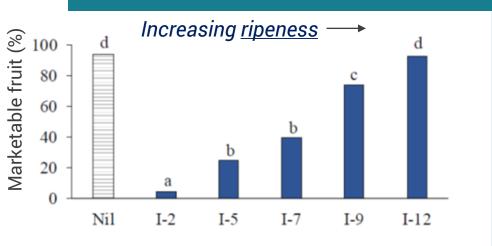
induced lenticle damage

IFIS International Food Ionizing Processing Symposium

Applied research to overcome issues

Research over many seasons and different growing regions was conducted to effectively manage induced lenticle damage.....

Fruit maturity and ripeness


Increasing ripeness reduces lenticle browning

Postharvest treatments

(eg. coatings / waxes) also affect the development of the damage

Marques *et al.* (2022) Irradiation-induced lenticel discolouration in 'B74' mango fruit is modulated by ripeness. *The Journal of Horticultural Science and Biotechnology.* 97:5, 665-672

Days of ripening before treatment

✓ Harvest at more 'mature' stage

- better eating quality

but shorter supply chain

Achievement

Mangoes successfully and <u>consistently</u> traded within Australia and exported using irradiation

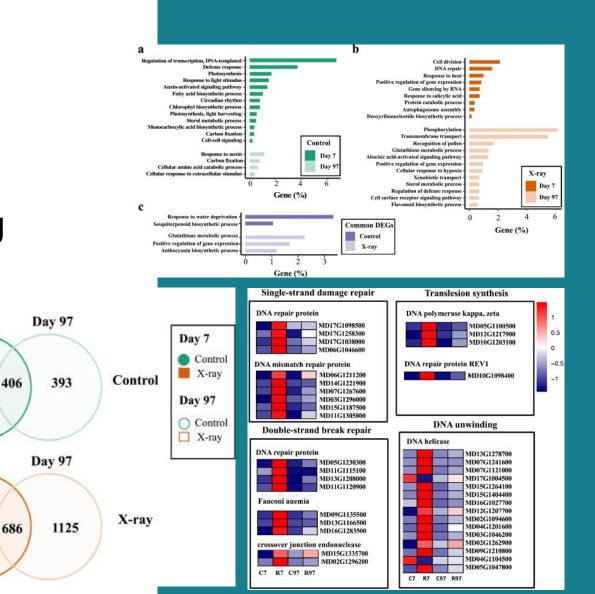
Source: calypsomango.com.au

Export outcomes Mangoes exported using irradiation treatment.

To ensure commercial outcomes \rightarrow alter commercial practice to ensure no lenticle browning

Harvest at more 'mature' stage =

 \rightarrow better eating quality but shorter supply chain



Next frontier... Fundamental understanding of irradiation on fruit quality

Moving from empirical studies to understand the molecular, biochemical and physiological processes affected by irradiation

Prof. Anuradha Prakash and team Chapman University. CA, USA

Atamian et al. (2023) Sci Hort 311 p.111777

Atamian, H.S., Davila, F.E.L. and **Prakash, A.** (2023) A transcriptomic study of 'Granny Smith' apple fruit response to x-ray irradiation using RNA-Seq. *Scientia Horticulturae*, 311, p.111777.

Day 7

4227

Day 7

2861

Acknowledgements.

International Atomic Energy Agency

RAS5087 Promoting Food Irradiation by Electron Beam and X Ray Technology to Enhance Food Safety, Security and Trade (RCA)

Hort Innovation

Department of Agriculture and Water Resources

Thanks.

- Dr. John Golding. Principle Research Scientist
 <u>https://www.dpi.nsw.gov.au/staff/profiles/john-golding</u>
- Central Coast Primary Industries Centre
 NSW Department of Primary Industries. Australia
- john.golding@dpi.nsw.gov.au

